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a b s t r a c t

Advection–diffusion equations (ADEs) are concise and tractable mathematical descriptions of population
distributions used widely to address spatial problems in applied and theoretical ecology. We assessed the
potential of non-linear ADEs to approximate over very large time and space scales the spatial distribu-
tions resulting from social behaviors such as swarming and schooling, in which populations are subdi-
vided into many groups of variable size, velocity and directional persistence. We developed a simple
numerical scheme to estimate coefficients in non-linear ADEs from individual-based model (IBM) simu-
lations. Alignment responses between neighbors within groups quantitatively and qualitatively affected
how populations moved. Asocial and swarming populations, and schooling populations with weak align-
ment tendencies, were well approximated by non-linear ADEs. For these behaviors, numerical estimates
such as ours could enhance realism and efficiency in ecosystem models of social organisms. Schooling
populations with strong alignment were poorly approximated, because (in contradiction to assumptions
underlying the ADE approach) effective diffusion and advection were not uniquely defined functions of
local density. PDE forms other than ADEs are apparently required to approximate strongly aligning
populations.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

An on-going development in mathematical biology has been the
derivation of spatially explicit models that approximate population
distribution changes across time and space. This development is
driven by the central importance of spatial processes to many out-
standing questions in basic and applied ecology. However, the
models’ utility depends firstly on whether they represent sufficient
detail of movement and other biological characteristics to capture
key mechanisms, and secondly on whether they are concise and
efficient enough to be implemented in ecologically relevant situa-
tions. These often involve large population sizes operating over
large time and space scales. The two performance metrics – detail
and efficiency – are often at odds in model design and suggest fun-
damentally different modeling approaches. Details of behavior,
physiological state, genetics and other characteristics are easily
implemented in stochastic individual-based models (IBMs). How-
ever, IBMs tend not to be efficient for large populations: computa-
tional effort usually increases at least in proportion to the number
of individuals and in some cases much faster. Large populations
can often be described very efficiently using partial differential
ll rights reserved.

(D. Grünbaum).
equations (PDEs). However, PDEs do not explicitly represent many
individual-level details.

These two modeling approaches can be put to best advantage if
a direct and quantitative association can be made between a de-
tailed IBM and a PDE that approximates it. In that case, the large
time- and space-scale consequences of changes in biological details
can be practically explored using a two-level approach, with a
microscopic IBM model explicitly representing biological details
and a macroscopic PDE efficiently approximating the IBM for
large-scale calculations (see [32] for an informative general discus-
sion of multi-scale coupling between microscopic and macroscopic
models). This dual approach is greatly facilitated in some cases by a
large mathematical literature on the derivation of PDEs for individ-
ual behaviors, usually in the form of advection–diffusion equations
(ADEs) for biased random-walks, e.g., [2,27,26]. The library of indi-
vidual-level movement algorithms for which there exists a ready
ADE translation is large, but is concentrated in a small subset of
biological behaviors: density-independent behaviors, in which
individuals respond to their environment but not to each other,
and in which responses to the environment are explicit statistical
functions of space. Many other biologically important behaviors
have been investigated in much less detail, notably behaviors in
which responses to environments are mediated by internal state
dynamics (e.g., physiological states such as hunger, sensory pro-
cesses such as adaptation, and cognition) [8,13], and those driven
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by social responses and other direct interactions among
individuals.

Social behaviors are usually modeled at the individual level
with non-local responses, such as interaction zones. For example,
IBMs of swarming behavior typically assume attraction zones,
within which organisms move towards each other, and repulsion
zones, within which organisms are repelled (see [24,26] for some
early examples, [6] for some newer ones). Usually these responses
are modulated by distance, the cumulative effect being longer-
range attraction and shorter-range repulsion such that population
density within groups does not increase without bound. Schooling,
which differs from swarming by the relatively higher polarity (i.e.,
correlation among heading angles) of members within a social
group, is usually modeled by the addition of alignment responses
in which group members actively match velocities to their neigh-
bors [1,19].

Most continuum models of social grouping are partial integro-
differential equations, in which the integral terms reflect the
non-local character of neighbor-neighbor responses within groups.
Often these are in ADE form, but with advective velocity expressed
in terms of convolutions over population density within a local
neighborhood [20,21,31]. Most such models are not explicitly de-
rived from individual-level behaviors, in part because estimating
fluxes due to social responses requires assumptions about higher
order statistics of individual positions within population distribu-
tions that may be difficult to justify or complex to implement
[11,22]. However, the convolution functional form appears a plau-
sible initial assumption, and provides useful theoretical insights
into the dynamics of group formation and dispersal. The non-linear
character of some social behaviors, in which populations move
while tending to resist deviations above or below some ‘preferred’
density, is reminiscent of fluid flows. Several recent investigations
have introduced potentially useful ideas from fluid mechanics to
the investigation of social behaviors, notably decomposition of
population fluxes into incompressible and potential motion com-
ponents [30] and direct representation of pressure-like effects in
auxiliary equations [4].

All of these approaches aim to explicitly represent the fine-scale
distributions of individuals within and between each group. In
practice, given the numerical demands of solving the relevant par-
tial integro-differential equations, these approaches are suited to
investigating the dynamics of single groups or interactions among
small numbers of groups. They represent a computational savings
over IBMs; however, many ecologically interesting applications in-
volve many thousands of groups, spread over spatial domains that
are very large compared to the extent of any single group. For these
applications, the computational benefits of the IBM-to-PDE transi-
tion may not be enough to make implementation of social behavior
models practical on ecological scales.

An alternative approach is provided by spatially implicit models
that attempt to predict how size distributions of groups change
over time (see the useful introduction in [24]). In this approach,
assumptions are made about size-dependent rates of fusion and
fission of groups, yielding a dynamical system for the number or
frequency of groups of each feasible size [5,23,28]. There is debate
about appropriate functional forms for fusion and fission rates, but
typically fusion events are assumed to depend on encounter rates
between groups, which are often approximately quadratic in fre-
quency of groups. However, fission events often occur at an
approximately constant probability per unit time, dependent on
group size but not on the proximity of other groups. Hence,
increasing population density results in a disproportionate in-
crease in fusion rate relative to fission rate, causing a shift in the
group size distribution towards larger groups.

An opportunity exists to combine the spatially explicit ap-
proaches used to represent population distributions with the spa-
tially implicit approaches that describe the subdivision of that
population into groups within any given local area. The essence
of this idea is to consider each group as a ‘meta-individual’, with
movement characteristics that depend on its size and its local envi-
ronment. Though interactions among individuals within groups are
non-local and non-linear, these non-local responses operate only
within a finite interaction distance. In many situations of ecological
interest, groups spend most of their time separated from other
groups by more than this distance, and during this time their
movements are functionally independent. While they move inde-
pendently, groups execute biased random walks. If biased random
walk behavior occupies a sufficiently large fraction of their time,
and fusion–fission events a sufficiently small fraction, the spatial
distribution of groups of each size might be estimated as for other
random walks with an ADE. So too could the distribution of the
whole population, with appropriate weighting of size-dependent
ADEs and accounting for fusion–fission dynamics.

If random walk statistics of groups vary with group size, as most
simulation results suggest they do, then shifts in the group size dis-
tribution correspond to changes in the random walk characteristics
of the population of groups. It appears a plausible hypothesis that
for a given population density, individuals have a characteristic
distribution across group sizes, each of which makes a characteris-
tic contribution to population-level advection and diffusion, and
that the cumulative advection and diffusion therefore varies in a
characteristic way with population density. This reasoning sug-
gests a non-linear advection–diffusion equation of the form

oP
ot
¼ rðDðPÞrP � vðPÞrSPÞ ð1Þ

where the coefficients DðPÞ and vðPÞ are functions of population
density, and rS represents directional environmental cues. Flierl
et al. [10] used a similar heuristic argument to suggest, based on
size-dependent geometry and movement characteristics of social
groups in an idealized model of schooling behavior, that the effec-
tive diffusion coefficient was a decreasing function of population
size. Okubo et al. [25] proposed an analytical procedure for rigor-
ously deriving density-dependent diffusion coefficients, but imple-
menting this scheme is difficult.

Previous ecosystem-level models of social organisms such as
tuna [15] and capelin [17] have assumed ADE forms, but without
explicit functional dependence on population density. The overall
goal of this paper is explore the potential of equations like (1) to
endow these models with improved descriptions of social move-
ments, without requiring a fundamental shift in numerical meth-
ods. A polynomial density-dependence is a convenient, though
not unique, functional form in which to explore the potential of
this approach. Therefore, our specific hypothesis is that IBMs of
combined social and gradient-climbing behaviors can be approxi-
mated at very large space and time scales by (1) with coefficients
that are polynomial functions of population density,

DðPÞ ¼ D0 þ D1P þ D2P2 þ . . .þ DmPm;

vðPÞ ¼ v0 þ v1P þ v2P2 þ . . .þ vmPm:
ð2Þ

Lacking a practical analytical alternative, we consider in this pa-
per whether simple empirically driven numerical approaches –
essentially curve fits of our assumed functional forms – can yield
useful approximations to spatially explicit IBM models of com-
plex social behavior. If so, immediate progress might be made
addressing biological processes that are of practical importance
but presently intractable, and insights might be gained into
which analytical simplifications can be justified. If not, the failure
of our quick and easy numerical approach may indicate that a
more laborious and complex analytical approach would also
likely be unsuccessful.
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If (1) and (2) are adequate descriptors of complex IBM dynam-
ics, a small number of simulation runs are sufficient to estimate the
relevant coefficients. The objectives of this paper are: to carry out a
set of IBM simulations with individuals exhibiting a range of social
and gradient-climbing behaviors to serve as test cases (Section 2);
to implement an efficient procedure to calculate best-fitting
parameters of equations of the form (1),(2) (Section 3); to apply
this procedure to the IBM results and assess how well the resulting
PDEs approximate the IBM population distributions (Section 4);
and, finally, to consider what the results imply for PDE approxima-
tion approaches for social behaviors (Section 5).

2. Individual-based simulations

The IBM used to generate tests cases in this paper combines a
taxis-type gradient climbing behavior with attraction-repulsion
and alignment responses to neighbors. [12] used a similar model
to show that social interactions can enhance gradient-climbing in
noisy environments. Individuals move at constant speed, here nor-
malized to unity, within the x� y plane. At regular small time
intervals, dt, individuals increment their direction by a small angle
change Dh, given by

Dh ¼ Dhtax þ Dhattr þ Dhrep þ Dhalgn: ð3Þ

Here, Dhtax is an angle increment due to taxis, which for the ith indi-
vidual (with x-position xi and heading angle hi) is

Dhtax ¼maxð0;Dh1 þ gðt; xÞDh2 cos hiÞNi;t : ð4Þ

Dh1 is a heading-independent angle increment, and Dh2 is the mag-
nitude of response to a directional signal gðt; xÞ that depends on
heading angle, hi. This angle-dependence results in larger incre-
ments away from some directions, and hence a reduced probability
of individuals moving in those directions. For positive values of Dh2,
this results in tactic movement in the positive x-direction when
g > 0 and in the negative x-direction when g < 0. The directional
signal may be, but does not have to be, the gradient of an attractant
distribution, Sðt; xÞ, in which case g ¼ oS=ox. Ni;t is chosen from a
standard normal distribution at each time step for each individual.

Dhattr is the social attraction response. At each time step, each
individual censuses the number of neighbors within radius rattr to
its right or left. If the total number of neighbors is below a target
density lattr, then Dhattr ¼ �a, the sign being chosen so that the
increment is towards the side with more neighbors. Otherwise,
Dhattr ¼ 0. The repulsion response is analogous: if the total number
of neighbors within a radius rrep exceeds lrep, individuals turn with
increment Dhrep ¼ �b, the sign chosen so that the increment is
away from the side with more neighbors. The alignment response
is Dhalgn ¼ �c, with the sign such that angle increment is towards
matching the heading of a randomly chosen neighbor within a ra-
dius ralgn. Over many steps, individuals with this alignment re-
sponse tend to approach the mean heading of their neighbors.

Four parameter sets were used in the estimation procedures: an
asocial behavior, in which there are no social interactions
ða ¼ b ¼ c ¼ 0Þ; a swarm behavior, that included attraction and
repulsion but not alignment ða ¼ 4; b ¼ 10; c ¼ 0Þ; a weak align-
ment behavior that included attraction and repulsion with a slight
tendency to align with neighbors ða ¼ 4; b ¼ 10; c ¼ 1Þ; and a
strong alignment behavior that included attraction and repulsion
with a strong tendency to align with neighbors
ða ¼ 4; b ¼ 10; c ¼ 3Þ. Note that for all the social behaviors, repul-
sion responses dominate both attraction and alignment, and
attraction exceeds alignment. The interaction distances for all the
social cases were rrep ¼ 1 and rattr ¼ ralgn ¼ 1:5. In all simulations,
periodic boundary conditions were used in both x- and y-direc-
tions. Environmental variation, when present, was only in the
x-direction. Individuals were initially distributed with uniform
random distributions in h and y, and with probability density func-
tions in x as described below.

3. Estimation of advection–diffusion coefficients

The coefficients in (1) and (2) can be efficiently estimated from
IBM simulations by considering the spatially uniform case,
Pðt; xÞ ¼ P and gðt; xÞ ¼ �gðtÞ. In this case, the coefficients DðPÞ and
vðPÞ are constant across the simulation domain. Within this
uniform distribution, a subset of ‘marked’ individuals that at time
0 is in the interval ½x1; x2� subsequently has the distribution

bPðt; xÞ ¼ P
2

erf
x� x1 � UðPÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

0
B@

1
CA� erf

x� x2 � UðPÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DðPÞt

q
0
B@

1
CA

2
64

3
75 ð5Þ

where UðPÞ ¼ vðPÞ�gðtÞ. The expected number of individuals in the
interval ½x3; x4� at time t is then

bQ ðtÞ ¼ Z x4

x3

bPðt; xÞdx: ð6Þ

If individuals are assumed to move independently (i.e., if most
marked individuals are in different groups from each other), then
the probability of observing k individuals move from ½x1; x2� to
½x3; x4� in an IBM simulation over time t is the Poisson probability

Prob kjbQ� �
¼
bQ ke�bQ

k!
: ð7Þ

By subdividing the domain into vertical sectors with width DL
and recording movements of individuals between sectors at time
intervals Dt, each spatially uniform simulation provides many real-
izations of the random movements in which to evaluate the cumu-
lative probability from (7) for assumed values of DðPÞ and vðPÞ.
Minimization of the negative log-likelihood of cumulative proba-
bility across a series of P values provides a convenient means of
estimating coefficients for DðPÞ and vðPÞ, assuming the functional
forms (2).

The IBM simulations used to estimate these coefficients em-
ployed 216 individuals moving within a spatial domain of
Lx ¼ 324 in the x-direction. Domain sizes in the y-direction were
Ly ¼ 2592, 1296, 648, 486, 324, and 216 to obtain a range of
population densities, P ¼ 0:0780, 0.1561, 0.3121, 0.4682,
0.6243, and 0.9364. Individuals in tight hexagonal packing at
the repulsion distance, rrep ¼ 1, have a population density of
Pmax ¼ 2=

ffiffiffi
3
p
¼ 1:1547; thus these simulations span most of the

range between zero and maximum relevant population densities.
Simulations were run with time steps dt ¼ 0:025 for tmax ¼ 600
time units, with the attractant increasing linearly in time as
�gðtÞ ¼ g0t=tmax; g0 ¼ 0:125. Parameter estimates based on sub-
sampled data suggest these simulations were adequate to
achieve convergence (Fig. 1).

Likelihood-maximizing parameters with m ¼ 2 for the asocial,
swarm, weak align and strong align behaviors are shown in Table
1, together with 95% likelihood-based confidence regions for these
parameters. The corresponding non-linear advection and diffusion
coefficients are plotted in Figs. 2 and 3. Comparisons of population
fluxes predicted by (1) and (2) using best-fit coefficients to fluxes
observed in the spatially uniform simulations (Fig. 4) suggests that
the non-linear ADEs can reproduce the simulations to which they
were fitted, for each of the asocial, swarm, weak align and strong
align behaviors.

Key features of these results, with possible interpretations, are
as follows: in the asocial case, the estimation procedure correctly
determines the absence of significant density-dependence in the
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Fig. 1. Variability of estimated coefficients in (2) as a function of dataset size for the weakly aligning social behavior. The entire simulation dataset consisted of 336 samples,
each of which represented a realization of the stochastic process in (5)–(7). Asterisks represent parameter estimates based on all 336 samples (Table 1). Points represent
estimates from subsets of the samples (without replacement), i.e., 7 estimates from 48 samples each, 21 estimates from 16 samples each, and 4 estimates from 84 samples
each. These plots suggest that estimates based on the complete 336 sample dataset have converged close to their true values. Convergence for the other behaviors were
similar to that for the weakly aligning behavior, except for the strongly aligning behavior in which convergence was faster.

Table 1
Non-linear diffusion and taxis coefficients in Eqs. (1) and (2) with m ¼ 2, estimated from IBM simulations of the four focal behaviors: asocial ða ¼ b ¼ c ¼ 0Þ; swarm
ða ¼ 4; b ¼ 10; c ¼ 0Þ; weak alignment ða ¼ 4; b ¼ 10; c ¼ 1Þ and strong alignment ða ¼ 4; b ¼ 10; c ¼ 3Þ

Behavior D0 D1 D2

Asocial 1.6041 (1.5896,1.6187) �0.0478 (�0.0758,�0.0195) 0.0238 (�0.012,0.0602)
Swarm 0.4957 (0.4926,0.499) �0.9273 (�0.9322,�0.9222) 0.5932 (0.5872,0.5994)
Weak align 0.8911 (0.8874,0.8949) �1.9143 (�1.9198,�1.9086) 1.2188 (1.2121,1.2257)
Strong align 3.2129 (3.2034,3.2226) �6.6818 (�6.6944,�6.6689) 3.8585 (3.844,3.8735)
Strong adjusted 7.2262 �6.5716 3.7216

Behavior v0 v1 v2

Asocial 0.5514 (0.5478,0.5549) 0.0017 (�0.00529,0.0087) �0.0033 (�0.0122,0.00565)
Swarm 0.2203 (0.2182,0.2223) �0.3700 (�0.3737,�0.3663) 0.2703 (0.2656,0.275)
Weak align 0.3994 (0.3972,0.4017) �0.6417 (�0.6547,�0.6376) 0.4163 (0.4113,0.4213)
Strong align 0.5170 (0.5131,0.5208) 1.7363 (1.7293,1.7433) �1.6664 (�1.6749,�1.6578)
Strong adjusted 0.5170 1.7363 �1.6664

Numbers in parentheses indicate the likelihood-based 95% confidence interval [18]. These parameters were obtained with DL ¼ 81 and Dt ¼ 40, for 40 6 t 6 600. Also shown
are the ‘adjusted’ coefficients used for additional comparisons in Fig. 9. Adjusted coefficients are not maximum-likelihood estimates, so confidence regions for them are not
reported. See text for additional details.
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advection and diffusion coefficients. Swarming behavior, in which
individuals aggregate into groups but do not actively align, leads to
a dramatic decrease in effective diffusion and taxis compared to
the asocial behavior. An interpretation is that an unpolarized group
in some sense averages the random fluctuations of its members. It
is then expected that individuals diffuse less if they constrain their
movement to remain within the group. Increasing population den-
sity from near zero to approximately one-half the tight packing
density Pmax decreases the effective diffusion rate. This may be be-
cause the group size distribution shifts from mostly small to
mostly large groups, with larger groups exerting a stronger filter
on random movements. It is less clear why the directional compo-
nent is lowered by social behavior. One interpretation is that fre-
quent heading adjustments to maintain appropriate degrees of
crowding disrupt directional responses to the environment.

Consistent with this interpretation, addition of weak alignment
responses significantly increases the effective diffusion and taxis
coefficients (nearly doubling them, in this case). Alignment behav-
iors dampen heading adjustments due to over- and under-crowd-
ing, thereby increasing group velocity, directional persistence and
sensitivity to directional cues. These changes are expected to in-
crease diffusion and advection. However, D and v are still decreas-
ing functions of P, probably reflecting the tendency of larger groups
to have lower polarity and smaller velocities than smaller groups.

An interesting transition occurs when alignment increases from
weak to strong. Stronger alignment results in dramatically larger
diffusion and taxis coefficients, and the diffusion coefficient de-
creases (as before) with P. However, the taxis coefficient for the
strong alignment behavior increases dramatically with P, over
the population density range between zero and P � Pmax=2. This
rise is consistent with previous observations of social taxis [12],
in which strong alignment tended to narrow angular distributions
within polarized groups climbing noisy gradients. This narrowing
tendency was more pronounced as groups increased from solitary
individuals to � 50 members. In the present simulations, shifts in
the group size distribution across the corresponding range may ac-
count for increases in taxis. At population densities above
� Pmax=2;v decreases with P. This may be due to repulsion
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Fig. 2. Graphical comparison of the non-linear diffusion coefficient, DðPÞ, estimated
from IBM simulations of asocial, swarm, weak align and strong align behaviors (see
Table 1).
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responses during collisions among groups, which become increas-
ingly frequent at high population densities.

4. IBM-PDE comparisons

To assess how well the fitted ADEs approximate the four focal
IBM behaviors, matched IBM and ADE simulations were run in a
spatially variable environment,

gðt; xÞ ¼ g1 cos
2pxi

Lx

� �
: ð8Þ

In each case, the population was initially uniformly distributed
across the entire y-domain, and within an interval
½Lx=4 6 x 6 3Lx=4� that did not include the peak of the attractant
distribution. This geometry was chosen because it allows compari-
sons among both initial transients and long-time distributions, and
both sharp and smooth population density variations.
Simulations were run with 217 individuals using time steps
dt ¼ 0:025 for tmax ¼ 1800 time units, with spatial domains
Lx ¼ 648; Ly ¼ 486, and with g1 ¼ 0:125. Spatial distributions from
the two modeling approaches at three times are presented for aso-
cial behavior (Fig. 5), swarming (Fig. 6), weak alignment (Fig. 7)
and strong alignment (Fig. 8). Also shown in these figures are the
instantaneous spatial distributions of D;v;U and oS

ox, and the time
series of an R2 goodness-of-fit metric. These results are typical of
many IBM/ADE comparisons run at both smaller and larger spatial
scales.

In the first two of these comparisons – for the asocial and
swarming behaviors – the ADEs derived from the estimation proce-
dure are very good approximations to the corresponding IBMs. For
the weak alignment behavior, the approximation seems to be use-
ful. However, where the ADE model results are nearly indistin-
guishable from the IBM in the asocial and swarming behavior, in
the weak aligning case the ADE gives small but systematic overes-
timates of high densities, and underestimates of low densities.

These errors become dramatic for the strong alignment behav-
ior. In this case, the population in the ADE model quickly coalesces
into a much tighter distribution than in the IBM, greatly overesti-
mating the magnitude of the population density peak and underes-
timating its breadth. The reasons for the tight population
concentration in the ADE model are indicated by the spatial distri-
butions of D and v: the peak corresponds to a significant local in-
crease in v, and a very large local decrease in D. From the IBM
results, it appears that this peak (and hence presumably the D
and/or v distributions that cause it) are spurious.

This suggestion can be easily confirmed by arbitrarily increasing
the diffusion coefficient (see Table 1), whereupon the adjusted ADE
provides a very close approximation to the IBM distribution for the
strong alignment behavior (Fig. 9). We have confirmed that the ad-
justed ADE is then a poorer fit to fluxes in the spatially uniform
simulations of Section 3. This result suggests that an ADE can accu-
rately approximate the strongly aligning spatially non-uniform
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IBM simulation. However, our estimation scheme did not identify
that ADE, because an IBM of the same behavior on a different spa-
tial domain is better approximated by a different ADE. That is, in
the strongly aligning case there does not appear to be a one-to-
one correspondence between individual behavior and approximat-
ing population-level ADE.

The suggestion is then that effective diffusion and/or taxis are
not functions (only of) of population density for the strongly align-
ing behavior, though they appeared to be for the asocial, swarming
and weakly aligning behaviors. We can assess this suggestion inde-
pendently of our estimation scheme by calculating effective diffu-
sion directly from individuals’ mean squared displacements in
both spatially uniform and non-uniform environments (Fig. 10).
These results reinforce the idea that the strongly aligning behavior
differs qualitatively from the other behaviors: The effective diffu-
sion from the spatially non-uniform IBM falls on the curves from
the spatially uniform IBMs for asocial, swarming and weakly align-
ing behaviors. However, effective diffusion from the spatially non-
uniform IBM is much higher than the curve from the spatially uni-
form IBMs for the strongly aligning behavior.
5. Implications for PDE approximations of social behaviors

In this paper, we implemented a simple estimation procedure to
approximate individual-based models (IBMs) of social and taxis
behaviors with non-linear advection–diffusion equations (ADEs).
We obtained approximating equations for four behaviors: asocial
taxis, and taxis with three social behaviors (swarming, schooling
with weak alignment, and schooling with strong alignment). The
asocial behavior is density-independent. This behavior has linear
dynamics, and in theory the constant coefficients for population
movements can be derived using existing theoretical approaches.
However, in practice, there is a mismatch in complexity and detail
between the realistic behaviors typically employed in ecosystem-
level IBMs and the more idealized behaviors for which analyses
have been developed. For the social behaviors, which have inher-
ently non-linear dynamics, some classes of population-level
approximations have been investigated (usually with integral
terms), but few theoretical methods exist for linking these explic-
itly to specific individual-level behaviors. For both asocial and so-
cial behaviors, there is an unmet need for population-level
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approximations to address complex spatial dynamics relevant to
current problems in basic and applied ecology.

By taking a numerical rather than an analytical approach, we
sacrificed some measure of generality. However, we gained flexi-
bility in applying our procedure not only to a wide variety of indi-
vidual-based behavioral models, but also potentially directly to
empirical observations of organism movements for which no ade-
quate behavioral models exist.

The results of our parameter estimation are consistent with the
general expectations from previous work that social behaviors
have dramatic effects on effective population-level advection and
diffusion. All the social behaviors resulted in substantial density-
dependent non-linearities at the population level. Furthermore,
details of social interactions, especially alignment, had profound
effects on population-level fluxes. In real organisms, alignment
(along with many other behavioral choices of individuals) likely
varies facultatively among individuals over short time and space
scales [14, e.g., see for an example in fish schools]. It is to be ex-
pected then that population fluxes for these organisms also change
over commensurate scales.
We have two principal results. The first is that our estimation
procedure yielded non-linear advection–diffusion equations that
usefully predicted population distributions in IBMs of asocial,
swarming and weakly aligning schooling behaviors. For two of
those behaviors (asocial and swarming), population distributions
were nearly indistinguishable between the IBM and ADE. For the
weakly aligning case, systematic differences between the IBM
and ADE results were evident. However, even in this case the
approximation was good – almost certainly a significant improve-
ment over constant-coefficient ADE descriptions currently used in
most large-scale ecosystem models, which entirely neglect den-
sity-dependent effects.

For these behaviors, useful non-linear ADE approximations were
obtained easily and with little computational effort. The computer
time required to estimate parameters from short-term, small-scale
IBMs and then to integrate the ADE solutions was lower than the di-
rect simulation of the larger IBM. Furthermore, this is a one-time
cost: the non-linear ADE can be applied to many different population
distributions and environments, without re-estimating parameters,
as long as the underlying movement behaviors are consistent. For
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Fig. 7. Comparison of IBM vs. ADE spatial distributions for the weakly aligning schooling behavior, at t ¼ 0 (a), t ¼ 60 (b) and t ¼ 180, (c). In each of these, the left subplot
shows the spatial distribution of population density from the two models (IBM: solid; ADE: dashed). In the IBM, population density is estimated by censusing individuals in
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models addressing real-world ecological problems, which are much
more complex and costly, we expect the computational gains to be
substantial. From the reduced computational requirements, and
the analytical advantages of ADEs (however obtained), it appears
beneficial to employ simple numerical estimation schemes like ours
where analytical derivations of ADE approximations to IBM behav-
iors are unavailable or impossible. Furthermore, for behaviors simi-
lar to those in which the estimation procedure produced an accurate
approximation, our results suggest that analytical derivations would
be useful if they were made available.

Our second principal result is that our attempts to approximate
population distributions that school with strong alignment with
non-linear ADEs were not successful. For this behavior, we simu-
lated IBM population distributions in two environments, one spa-
tially uniform and the other spatially non-uniform. Each was
well approximated by a non-linear ADE. However, we found no
single ADE that adequately described population distributions in
both environments.

Whether poor predictive skill of the approximating ADE for the
strongly aligning IBM model has broader pessimistic implications
for using ADEs to approximate strongly aligning social behaviors
depends on whether the estimation procedure failed, or whether
these populations are in general not well described by any PDE that
has an ADE functional form.

A limitation of ADEs in general is that they describe population
movements accurately only in the so-called diffusion limit. Essen-
tially this means that environmental and population density gradi-
ents must be small at the correlation length scales of individual
movements. This condition is not satisfied at the leading edge of
a population spreading from an initially compact distribution. In
this case, the leading edge can advance at no more than the max-
imum movement speed of individuals, but the diffusion approxi-
mation predicts that the tail of the population distribution
instantaneously spans the entire spatial domain (that is, the ADE
is parabolic). If at the appropriate diffusion rate individuals in
the IBM spread more slowly than expected, our estimation proce-
dure may compensate by lowering its estimate of D. Consistent
with this, our procedure underestimated D. However, the magni-
tude of this error is dependent on the time and space intervals
DL and DT. The ADE coefficients estimated by our scheme were
consistent across large variations in DL and DT . Hence, though
we cannot exclude the possibility that our estimates had small
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inaccuracies, it is unlikely that this type of error underlies the large
discrepancies between the strongly aligning IBM and the best-fit
ADE.

We believe the alternative, more pessimistic explanation – that
strongly aligning populations do not obey any sort of ADE dynam-
ics of the form (1) – is more central to the poor accuracy of the
approximation found by our estimation procedure. According to
this explanation, the effective diffusion and taxis coefficients are
not functions only of local population density (as they must be in
(1)). Instead, strongly social populations with the same density
can have different effective diffusion and taxis coefficients depend-
ing on non-local variations in population density and environment.

To assess whether different effective diffusion can occur at sim-
ilar population densities, we estimated diffusion from individual
trajectories under comparable conditions in the two environmen-
tal configurations we used in our simulations (Fig. 10). Mean
squared displacements of these trajectories gave inconsistent esti-
mates of effective diffusion, with a higher effective diffusion in the
spatially non-uniform than in the spatially uniform case. This is
inconsistent with effective diffusivity being strictly a function of
population density. Thus a key assumption underlying the func-
tional form (1) appears to be violated.

The simplest explanation for the differences we observed in
effective diffusion is that, if individuals travel at constant speeds
(as they did in our simulations), diffusion and advection velocity
are not independent (e.g., [9]). For example, high population-level
advection speed can occur only if the heading angle distribution is
very tight. This necessarily implies a low diffusion. Hence diffusion
and advection co-vary as a function of the heading angle distribu-
tion. However, this covariation is quantitatively small until advec-
tion velocities are quite close to individuals’ travel speed. We
attempted to account for this co-variation by modifying (1)). Spe-
cifically, we assumed that the heading angles of individuals at each
x-position followed Wrapped Cauchy distributions. We used local
advection velocities to estimate the local-scale parameters for
these distributions, from which we calculated the corresponding
decrement in effective diffusion. Neither the best-fit coefficients
nor the accuracy of the approximating ADE were significantly
changed by this modification. This is probably because, in our
simulations, advection velocity rarely approaches individuals’
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Fig. 9. This IBM vs. ADE comparison is the same as that in Fig. 8, except that the coefficients have been ‘adjusted’ by arbitrarily increasing the parameter D0 (see Table 1). This
adjustment is not in any way optimized. Nonetheless, this comparison shows that an ADE approximation is possible that predicts spatially non-uniform population
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travel speed (e.g., Figs. 5–9). Thus, we believe this explanation is
not sufficient to explain the non-ADE dynamics we observed in
strongly aligning populations.

A fuller explanation probably centers around more complex
differences in the underlying distributions of group size, polarity
and heading angles in the two spatial configurations. Strong
alignment has effects not only within groups; it also tends to
produce alignment among groups at larger spatial scales. This
is because groups that differ greatly in heading are likely to
encounter each other frequently, and subsequently both assume
intermediate heading angles. Thus groups with ‘minority’ head-
ing angles tend to reorient more than groups with ‘majority’
heading angles, reinforcing the consensus direction. In our spa-
tially uniform simulations, there was no extrinsic mechanism
to limit the length scale of this larger-scale alignment. The result
was a high degree of polarity across the entire population, re-
flected in small diffusion coefficients, and high fluxes, reflected
in large taxis coefficients.

In contrast, fluxes in the spatially variable case (Fig. 8) ap-
proached zero as the population distribution approached equilib-
rium. Zero flux is incompatible with population-wide polarity. If
strong alignment promotes polarity at greater than small length
scales, and zero flux precludes polarity at large length scales, the
likely result would seem to be polarity at intermediate scales.
The proposed explanation is then that, in the presence of strong
alignment, coherent meso-scale polarized structures arise in the
zero-flux case but not the constant flux cases. These meso-scale
structures significantly increase effective diffusion (as in Fig. 10),
in ways that cannot be predicted from local population density
and environment alone.

While our initial, simple ADE form appears inadequate to
approximate population-level fluxes arising from social behaviors
with strong alignment, it seems likely that a similar numerical
approach using more suitable types of PDEs might prove suc-
cessful. A possible experimental and theoretical analog for this
has already been described in recent literature as ‘low Reynolds
number turbulence’ arising in some dense populations of bacte-
ria as a result of neighbor–neighbor contact and hydrodynamic
forcing [3,7,16,29]. PDE forms abstracted from this and other
fluid mechanics-inspired treatments of multi-scale spatial pro-
cesses seem to be a good starting point from which to begin fu-
ture approximation efforts.
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